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Objective: End-stage coagulation and the structure/function of fibrin are implicated in the pathogenesis of ischemic
stroke. We explored whether genetic variants associated with end-stage coagulation in healthy volunteers account
for the genetic predisposition to ischemic stroke and examined their influence on stroke subtype.
Methods: Common genetic variants identified through genome-wide association studies of coagulation factors and
fibrin structure/function in healthy twins (n 5 2,100, Stage 1) were examined in ischemic stroke (n 5 4,200 cases)
using 2 independent samples of European ancestry (Stage 2). A third clinical collection having stroke subtyping (total
8,900 cases, 55,000 controls) was used for replication (Stage 3).
Results: Stage 1 identified 524 single nucleotide polymorphisms (SNPs) from 23 linkage disequilibrium blocks having
significant association (p < 5 3 1028) with 1 or more coagulation/fibrin phenotypes. The most striking associations
included SNP rs5985 with factor XIII activity (p 5 2.6 3 102186), rs10665 with FVII (p 5 2.4 3 10247), and rs505922
in the ABO gene with both von Willebrand factor (p 5 4.7 3 10257) and factor VIII (p 5 1.2 3 10236). In Stage 2,
the 23 independent SNPs were examined in stroke cases/noncases using MOnica Risk, Genetics, Archiving and
Monograph (MORGAM) and Wellcome Trust Case Control Consortium 2 collections. SNP rs505922 was nominally
associated with ischemic stroke (odds ratio 5 0.94, 95% confidence interval 5 0.88–0.99, p 5 0.023). Independent
replication in Meta-Stroke confirmed the rs505922 association with stroke, beta (standard error, SE) 5 0.066 (0.02),
p 5 0.001, a finding specific to large-vessel and cardioembolic stroke (p 5 0.001 and p 5 < 0.001, respectively) but
not seen with small-vessel stroke (p 5 0.811).
Interpretation: ABO gene variants are associated with large-vessel and cardioembolic stroke but not small-vessel dis-
ease. This work sheds light on the different pathogenic mechanisms underpinning stroke subtype.

ANN NEUROL 2012;73:16–31

Ischemic stroke is among the leading causes of death

and disability in high-income countries.1 EuroCLOT is

a European Union–funded multicenter study established

to identify the genetic variants contributing to end-stage

coagulation, as a means of exploring whether the same

variants contribute to risk of ischemic stroke. It is known

that genetic factors account for approximately 60% of

the risk of thrombosis,2 and studies have demonstrated

the influence of genetic factors on the individual compo-

nents of coagulation and fibrinolysis. Furthermore, ex

vivo measures of fibrin structure and fibrinolysis have

been shown to be heritable.3 The nature of the structure

and function of fibrin has been shown to influence clot

behavior, and earlier work by the EuroCLOT consortium

has demonstrated heritability of fibrin clot phenotypes

measured by a high-throughput turbidimetric assay and

several regions of linkage.4 The goal of this study was to

extend these observations by using the genome-wide

association (GWA) approach to identify common genetic

loci associated with coagulation phenotypes and to deter-

mine whether associated loci were further associated with

the clinically important phenotype ischemic stroke and

its different subtypes. GWA studies have identified com-

mon genetic loci of small effect associated with clinical

phenotypes such as coronary artery disease.5 The GWA

method allows an agnostic study of variation within the

genome, unbiased by prior knowledge of the cellular

pathways involved or the use of candidate genes, and has

been successful in finding hundreds of gene loci to

date.6 The overall aim was to determine whether genetic

variants associated with coagulation and fibrin structure

function were risk factors for ischemic stroke and if so
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whether such associations differed between stroke

subtypes.

Subjects and Methods

We used a 3-stage study design to identify common variants

influencing coagulation and fibrin structure/function in the nor-

mal population and then tested genome-wide significant inde-

pendent single nucleotide polymorphisms (SNPs) for association

with stroke in subjects of Northern European extraction (Fig 1).

To study the broad range of hemostatic variables contributing to

end-stage coagulation, GWA studies of fibrin structure/function

ex vivo, fibrin turnover (D-dimer) in vivo, and individual hemo-

static components were performed in a healthy volunteer cohort

of twins (Stage 1). In Stage 2, those variants found to be inde-

pendently associated with coagulation or fibrin structure/function

were assessed as risk factors for ischemic stroke in cases and con-

trols. In Stage 3, the top 4 SNPs from the meta-analysis of ische-

mic stroke were examined for replication in a third clinical col-

lection of stroke having information on whether stroke resulted

from occlusion of large-vessel, small-vessel, or cardiac emboli.

Detailed methods are provided below. Written informed consent

was obtained from participants in the study, and each individual

study group obtained local ethics approval.

Phenotyping the Cohorts
TwinsUK. The subjects were obtained from the TwinsUK

(TUK) registry (www.twinsuk.ac.uk) at King’s College London,

United Kingdom, which has been ascertained by a national

media campaign.7 For historical reasons, the majority of twin

volunteers are female. TUK subjects have been shown to be

representative of the wider general populations for genetic and

lifestyle factors associated with a variety of traits.8 TUK subjects

were phenotyped for fibrin structure/function, D-dimer, and

hemostatic factors, according to methods described in detail

elsewhere.9–12 In brief, fibrin structure/function was assessed

using a turbidimetric assay, whereas D-dimer (as a measure of

in vivo fibrin turnover), coagulation factors (F) VII, VIII, FXII,

FXIII A and B subunits (FXIIIA, FXIIIIB), prothrombin, and

von Willebrand Factor (vWF) were quantified by enzyme-

linked immunosorbent assay, and fibrinogen, FVII, and FXIII

by functional activity assays.

The MOnica Risk, Genetics, Archiving and Monograph

(MORGAM) Cohort. The cohorts of the MORGAM project

consist of the respondents of representative adult population sam-

ples.13 This study includes cohorts from a variety of centers,

including Finland (FINRISK, ATBC), France (Lille, Strasbourg,

Toulouse), Italy (Brianza), Northern Sweden, and Northern Ire-

land (Belfast) as described at http://www.ktl.fi/publications/mor-

gam/cohorts. The participants were examined and DNA was col-

lected at baseline, and they were followed up for stroke and acute

coronary events. Genotyping was carried out in a case–cohort set-

ting.14 In MORGAM cohorts, the end-point used was the subject

presenting with first ischemic stroke. For some events the diagno-

sis was based on validation, and for some on the clinical or death

certificate diagnosis (International Classification of Diseases

[ICD]-9 codes 433 or 434, or ICD-10 code I63).

Wellcome Trust Case Control Consortium 2. The Well-

come Trust Case Control Consortium 2 (WTCCC2) ischemic

stroke study comprises ischemic stroke cases recruited from 3

centers in the United Kingdom (St George’s London, Oxford,

and Edinburgh) and 1 center in Munich, Germany. In all cases,

ischemic stroke was defined as a focal neurological deficit last-

ing >24 hours; in 1 cohort (St George’s), cases of transient is-

chemic attack with associated recent brain infraction were also

included. Cerebral infraction was confirmed on brain imaging

with computed tomography (CT) or magnetic resonance (MR)

imaging, which was performed in 100% of cases, and extensive phe-

notyping was performed to allow stroke subtyping using a modified

TOAST classification.15 Full details of populations and investigation

performed have been previously published.16 Imaging of the cere-

bral arteries using carotid and vertebral duplex ultrasound and/or

MR angiography or CT angiography was performed in >95%,

echocardiography in 59.7%. Controls for the UK cases were the

shared WTCCC2 controls drawn from the National Blood Service

or the 1958 Birth Cohort Study (http://www.b58cgene.sgul.ac.uk).

German controls were from the population-based KORAgen study

(http://www.helmholtz-muenchen.de/en/kora-en/kora-home-

page/index.html). This study group was used primarily in Stage

2 but also for subgroup analysis in Stage 3.

MetaStroke. MetaStroke is a project of the International

Stroke Genetics Consortium and comprises ischemic stroke cases

whose DNA has been collected and undergone GWA scan,

recruited from centers in Europe (BRAINS [Bio-Repository of

DNA in Stroke], United Kingdom; DeCODE, Iceland; Cerebro-

vascular Diseases Registry (CEDIR), Milan, Italy; Rotterdam, the

Netherlands), USA (Atherosclerosis Risk in Communities study;

Cardiovascular Health Study; Framingham Heart Study; Genetics

of Early Onset Stroke Study; Heart Protection Study; Heart and

Vascular Health; Ischemic Stroke Genetics Study; Massachusetts

General Hospital Genes Affecting Stroke Risk and Outcome

study), and Australia (Australian Stroke Genetics Collaborative).

Ischemic stroke was defined clinically as a focal neurological defi-

cit lasting >24 hours. In almost all case–control studies, a high

level of brain imaging and extensive phenotyping was performed,

although this was less detailed in some of the prospective studies.

In those studies with adequate investigations to allow stroke sub-

typing, this was performed using a modified TOAST classifica-

tion.15 Controls were collected by the individual groups.

Genotyping and Within-Cohort Analysis
TUK. Genotyping was performed in 3 different genotypic

batches using Human Hap 300 k Duo and Human Hap610

Quad array (Illumina, San Diego, CA). Genotyping results

from the different arrays were collated and quality control was

performed as described previously,17 including retention of

those SNPs with sufficiently high genotyping rates (95% or

above) and Hardy–Weinberg equilibrium (p > 0.0001). Impu-

tation of nongenotyped SNPs was performed to HapMap2

Caucasian population haplotypes using IMPUTE version 2.18

Population substructure and admixture was excluded in TUK

using Eigenvector analysis.

MORGAM. Four SNPS (rs10665, rs2022309, rs5985,

and rs651007) were genotyped at the National Institute for

ANNALS of Neurology
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Health and Welfare in Finland. Several sample- and plate-spe-

cific quality control measures were implemented to minimize

errors, and in addition genotyping quality was assessed from

5% blind duplicate samples in each 96-well plate. For 234 sam-

ples with low DNA yield, DNA was amplified and genotyped

as previously described.19 Genotyping was performed using the

MassARRAY System and iPLEX Gold chemistry (Sequenom,

San Diego, CA) with standard protocol. Genotype clusters were

manually reviewed using Typer 4.0 software (Sequenom), and

genotype calls were corrected where necessary. Genotyping suc-

cess rate was >95% for all but 1 SNP (rs2022309, 91.3%),

with an average success rate of 95.7%. No discrepancies were

identified among a total of 1,256 successful blind duplicate ge-

notype pairs. Cox regression analysis adapted for the case–

cohort data was used to assess the association between the geno-

types and ischemic stroke in the MORGAM cohorts, assuming

an additive genotypic effect. The analysis was stratified by

cohort and sex.

WTCCC2. Stroke cases were genotyped using the Illu-

mina 660Q platform. Shared WTCCC2 controls were geno-

typed using the Illumina 1M Duo platform. German controls

were genotyped using the Illumina 550 platform. Analysis of

the UK and German cohorts was performed independently

using PLINK20 after quality control checking using a genotyp-

ing call rate of 98%, Hardy–Weinberg equilibrium call rate of

1e 220, and checks for individual relatedness and population

stratification. The UK and German cases were then meta-ana-

lyzed using METAL.21 Samples were identified and removed if

the genome-wide patterns of diversity differed from those of the

collection at large, interpreting them as likely to be due to biases

or artifacts. To do so, we used a Bayesian clustering approach to

infer outlying individuals on the basis of call rate, heterozygosity,

ancestry, and average probe intensity. We used a hidden Markov

model to infer identity by descent along the genome and

removed individuals iteratively to obtain a set with pair-wise

identity by descent <5%. Samples were also removed if their

inferred gender was discordant with the recorded gender or if

<90% of the SNPs typed by Sequenom (Sequenom iPLEX assay

for 4 gender SNPs) were concordant with the genome-wide data.

For the EuroCLOT study, individual UK and German cohort

and meta-analysis results were examined for the 23 available ge-

notypes. This was performed for the phenotype of all ischemic

stroke, together with the ischemic stroke subtypes of small-vessel

disease, large-vessel disease, and cardioembolic stroke.

MetaStroke. Genotyping of the 13 MetaStroke contribu-

tors was performed independently by each group, using either

Illumina or Affymetrix (Santa Clara, CA) platforms. Further

details on cases and controls, genotyping, and imputation are

available in Supplementary Table 3.

Statistical Analysis
Stage 1. We used multiple linear regression models to assess

association between genotypes and phenotypes, using age as a

covariate. The phenotypes examined in the TUK cohort were

inverse-normal transformed to satisfy the assumption of nor-

mality of trait distribution of the linear models. Association

FIGURE 1: Flow chart showing study design and cohorts involved. The 3 stages of the study design are shown, with number of
cases in each sample. GWA 5 genome-wide association; n 5 size of the cohort; SNP 5 single nucleotide polymorphism; TUK
5 TwinsUK; WTCCC2 5 Wellcome Trust Case Control Consortium 2.
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analysis was carried out using Merlin22 to control for family

structure within the dataset. Independence of the effects con-

ferred by SNPs in the same region was assessed by means of a

backward stepwise regression analysis on the trait with which

they were associated. This yielded 23 statistically independent

significant SNPs (p < 5 3 1028), associated with at least 1

quantitative outcome, which were taken forward for examina-

tion in the clinical groups at Stage 2. This stage of the analysis

was performed using Stata for Windows version 10 (Stata-

Corp, College Station, TX) with adjustment for the twins’

relatedness.

Stage 2. The 23 independent SNPs remaining significant

after multiple regression were carried through to investigation

of association with ischemic stroke in MORGAM and

WTCCC2. Results for each were meta-analyzed using a fixed

effects inverse variance weighting implemented in METAL.21

Stage 3. The 4 most significantly associated SNPs from

Stage 2 were tested for association with overall ischemic stroke

in Meta-Stroke. This international collaboration brings together

GWA studies in ischemic stroke and (depending on SNP)

includes 8,900 cases of ischemic stroke and 55,000 controls. In

addition, subgroup analysis was possible (in MetaStroke and

WTCCC2), as stroke events had been subphenotyped into

large-vessel, small-vessel, and cardioembolic stroke by many of

the contributing study groups, using the TOAST classifica-

tion.15 Within MetaStroke, samples were excluded from analysis

TABLE 1. Stage 1: Characteristics of the TwinsUK Discovery Sample

Trait No. Mean Min Max SD

Age, yr 2,128 50.4 17.3 80.1 12.72

BMI, kg/m2 2,124 25.5 15.2 52.4 4.7

Female gender, % 95.6 — — — —

D-dimer, ng/ml 1,362 104.9 9 3,740 151.3

FX antigen, U/ml 2,017 0.967 0.28 1.82 0.19

FVII:C, % 1,403 107.6 30 207 24.4

FVII antigen, IU/ml 1,082 100.1 36 190 26.0

FVIII antigen, IU/ml 1,940 0.9 0.3 7.1 0.3

FXIII activity, % 2,018 108.2 33 258 31.4

FXIIIA, U/ml 2,017 1.0 0 3.2 0.3

FXIIIB, U/ml 2,018 1.01 0.2 3.07 0.25

vWF, IU/ml 2,006 1.1 0.21 3.32 0.4

Fibrin lag time, s 2,484 81.00 2,555.0 347.0 8,996

Only those phenotypes found significant in the Stage 1 genome-wide association study are shown here (all results from Stage 1 are
given in the Supplementary Material).
BMI 5 body mass index; Fibrin lag time 5 lag phase of the turbidimetric clotting assay; FVII:C 5 factor VII clotting activity;
FXIIIA 5 FXIII A subunit; FXIIIB 5 FXIII B subunit; Max 5 maximum value; Min 5 minimum value; No. 5 sample size; SD
5 standard deviation; vWF 5 von Willebrand Factor.

TABLE 2. Stages 2 and 3: Characteristics of the Ischemic Stroke Collections

Cohort WTCCC2 MORGAMa MetaStroke

Cases Controls Cases Noncases Cases Controls

No. (% females) 3,548 (43.5) 5,972 (49.4) 715 (19.4) 2,932 (14.7) 8,884 55,254

Age, mean yr (SD) 70.5 (12.9) NA 60.4 (8.1) 59.1 (8.3) 67.1 (10.5) 59.4 (9.9)

BMI, mean kg/m2 (SD) NA NA 27.9 (4.5) 27.0 (4.1) NA NA

Age and BMI refer to values at the baseline of the follow-up.
aMOnica Risk, Genetics, Archiving and Monograph (MORGAM) is a population cohort with prospective follow-up for cases.
Genotyping for this study was performed in a case–cohort setting.
BMI 5 body mass index; NA 5 not available; No. 5 sample size; SD 5 standard deviation; WTCCC2 5 Wellcome Trust Case
Control Consortium 2.
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if they had call rates <80% or if reported gender was discord-

ant with gender-specific markers. We removed pairs of samples

showing concordance indicative of being duplicates. MetaStroke

genotyping results were imputed to HapMap2 using MACH2.

Where SNPs were imputed, r2 values were >0.9. Four SNPs

analyzed in these cohorts were meta-analyzed using a fixed

effects model with the metan module in Stata version 10.

Results

The characteristics of the 2,128 twin participants are

shown for TUK in Table 1 and Supplementary Table 1

(Stage 1). The mean age of the twins was 50.4 years, and

the sample included 87 (4.4%) males. All were of North

European descent. The sample size varied between assays;

for clarity, the number of subjects is included in the

tables for each phenotype.

Details of the clinical collections of stroke cases and

controls are shown in Table 2.

Stage 1
There were a number of strikingly strong genotype–phe-

notype associations identified in the TUK discovery

group, and in total 524 associations were found having p
< 5 3 1028. The 524 SNPs identified as significant ge-

nome-wide were mostly associated with coagulation fac-

tor phenotypes; there was 1 association with lag time to

TABLE 3. Stage 1: Independent SNPs (n 5 23) Found with p < 5 3 1028 in TwinsUK

Chr SNP Position Gene A1 A2 Freq A1 Trait Effect SE p

6 rs5985 6263794 F13A1 C A 0.741 FXIII activity 21.077 0.037 2.6 3 102186

6 rs3024321 6263125 F13A1 A G 0.679 FXIII activity 20.891 0.035 8.4 3 102142

9 rs505922 135139050 ABO T C 0.68 vWF 20.561 0.035 4.71 3 10257

9 rs643434 135132176 ABO G A 0.656 vWF 20.51 0.034 1.1 3 10249

13 rs10665 112800832 F7/F10 A G 0.878 FVII:C 0.847 0.059 2.37 3 10247

13 rs2181540 112801165 F7/F10 T C 0.876 FVII:C 0.834 0.058 1.18 3 10246

13 rs6041 112820708 F7/F10 G A 0.892 FVII:C 0.877 0.062 1.93 3 10245

1 rs10922162 195337399 CFHR4 C T 0.839 FXIIIA 0.521 0.045 1.55 3 10230

1 rs12116643 195239806 CFHR4 T C 0.84 FXIIIA 0.515 0.045 4.89 3 10230

9 rs651007 135143696 ABO C T 0.81 FVIII 20.461 0.044 1.94 3 10225

13 rs3211770 112841850 F7/F10 G A 0.879 FVII:C 0.534 0.059 2.98 3 10219

1 rs7410943 195421644 CFHR4 A G 0.531 FXIIIB 0.301 0.034 3.42 3 10219

1 rs4915559 195153393 CFHR4 T C 0.759 FXIIIA 0.339 0.038 7.3 3 10219

6 rs11243081 6282505 F13A1 C T 0.676 FXIIIA 20.299 0.035 5.13 3 10218

6 rs17142067 6286286 F13A1 A C 0.67 FXIIIA 20.299 0.035 1.24 3 10217

9 rs8176743 135121236 ABO C T 0.939 vWF 20.582 0.068 1.59 3 10217

6 rs1318606 6276935 F13A1 T C 0.569 FXIIIA 20.273 0.032 4.39 3 10217

13 rs555212 112804541 F7/F10 G A 0.768 FVII:C 20.367 0.046 1.07 3 10215

9 rs10982156 116127885 ORM1 T A 0.939 FX 0.456 0.072 2.47 3 10210

1 rs1410996 194963556 CFHR4 G A 0.585 FXIIIA 0.203 0.033 1.32 3 10209

5 rs12518614 6377293 FLJ33360 A G 0.954 vWF 20.463 0.077 1.52 3 10209

13 rs9533425 42668474 ENOX1 G C 0.801 Fibrin lag time 20.308 0.051 1.9 3 10209

1 rs2022309 94825064 F3 G T 0.701 D-dimer 20.244 0.045 4.32 3 10208

Of the 524 genome-wide significant associations identified in Stage 1, only independent SNPs are shown, and where associated
with multiple traits, the most significant result is given (all Stage 1 results are listed in Supplementary Table 2). The effect size
(Effect) and SE are expressed in terms of standard deviation for each phenotype. The probabilities for association (p) are from
multivariate models using single SNP genotypes as independent variables and age as covariate.
A1 5 allele 1; A2 5 allele 2; Chr 5 chromosome; Effect 5 beta of regression analysis; Fibrin lag time 5 lag phase of the turbidi-
metric clotting assay; Freq A1 5 frequency of allele 1; FVII:C 5 factor VII clotting activity; FXIIIA 5 FXIII A subunit; FXIIIB
5 FXIII B subunit; SE 5 standard error of beta; SNP 5 single nucleotide polymorphism; vWF 5 von Willebrand Factor.
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fibrin clot formation. After the interdependence of the

SNPs had been established by backward stepwise regres-

sion analysis, 23 statistically independent SNPs were

identified for examination in Stage 2 (shown in Table 3).

The strongest signals were observed for SNP rs5985 in

the F13A1 gene (encoding the FXIII A subunit) and

FXIII activity (p 5 2.6 3 102186), followed by

rs2731672 in the F12 gene associated with FXII concen-

tration (encoding FXII; p 5 1.3 3 102115; Supplemen-

tary Table 2) and rs505922 in the ABO gene with vWF

(p 5 4.7 3 10257; see Table 3) and factor VIII (p 5

1.2 3 10236; see Supplementary Table 2). Further coag-

ulation-related phenotype–SNP associations were identi-

fied for rs10665 in F7/MCF2L and FVII clotting activity

(p 5 2.4 3 10247), and rs2022309 in the F3 gene

(encoding tissue factor) with D-dimer concentration (p
5 4.3 3 1028).

A clear relationship was found between plasma

FXIII A subunit and SNP rs12137359 (p 5 1.0 3

10227) lying within the gene ZBTB41 (zinc finger and

BTB domain containing 41, a highly conserved gene).

However, this region on chromosome 1q is rich with

candidate genes, and the SNP in question lies down-

stream of the CFH and CFHR1-5 genes (encoding com-

plement factor H and CFH-related proteins 1 to 5) as

well as F13B (encoding FXIII B subunit). There is also

an association in this same region between rs800292 in

the CFH gene and FXIIIA concentration (p 5 1.5 3

10212).

Stage 2
In the MORGAM study, 6 of the 23 independent SNPs

were available for lookup. None of the SNPs was signifi-

cantly associated with ischemic stroke in this study group

or in WTCCC2, although there was a suggestion of an

effect for rs505922 in both MORGAM (T allele, beta 5

20.126, p 5 0.067) and WTCCC2 (T allele, beta 5

20.054, p 5 0.097). In the meta-analysis of WTCCC2

and MORGAM, SNP rs505922 in the ABO gene was

associated with ischemic stroke (beta for T allele 5

20.067, p 5 0.023), with the major T allele being pro-

tective against stroke (Table 4).

Stage 3
We examined the association of the 4 ABO SNPs in the

large Meta-Stroke dataset (Table 5, with genotyping

details in Supplementary Table 3) and further explored

their relationship with stroke subtype in Meta-Stroke and

WTCCC2. Results for ischemic stroke overall are shown

in Table 6 (positive results) and are illustrated by a forest

plot (Fig 2). The results show an association for lead

SNP rs505922 C allele with ischemic stroke (odds ratio

[OR] 5 1.07, 95% confidence interval [CI] 5 1.03–

1.11, p 5 0.0006). Two other ABO SNPs also showed

significant association: rs643434 (for A allele, meta-anal-

ysis logistic regression OR 5 1.06, 95% CI 5 1.02–

1.11, p 5 0.002) and rs651007 (C allele, OR 5 1.07,

95% CI 5 1.02–1.12, p 5 0.007; see Table 6). Analysis

by stroke subtype for SNP rs505922 showed association

with cardioembolic stroke (OR 5 1.13, 95% CI 5

1.11–1.15, p � 0.001), and large-vessel stroke (OR 5

1.23, 95% CI 5 1.07–1.18, p 5 0.001), but there was

no association with small-vessel disease (p 5 0.811;

Table 7).

Finally, to determine whether the genetic influence

was acting through known risk factors, we performed

subgroup analysis in the sample having this information,

WTCCC2–Munich. Adjusting for hypertension,

TABLE 4. Stage 2: Meta-Analysis of the Independent SNPs in Stroke

SNP A1 A2 MORGAM WTCCC2 Meta-Analysis

Cases Noncasesa Cases Controls Effect SE OR 95% CI p

rs505922 C T 544 2,411 3,548 5,972 0.067 0.029 1.06 1.01 1.14 0.023

rs651007b T C 609 2,348 3,548 5,972 0.053 0.035 1.05 0.98 1.13 0.130

rs10665 A G 608 2,339 3,548 5,972 0.049 0.046 1.05 0.96 1.15 0.282

rs5985 A C 593 2,330 3,548 5,972 20.027 0.033 0.97 0.91 1.04 0.416

rs2022309 T G 561 2,167 3,548 5,972 0.014 0.031 1.01 0.95 1.08 0.648

rs1211664b T C 543 2,410 3,548 5,972 0.008 0.038 1.01 0.93 1.09 0.840

Of the 23 independent SNPs identified in Stage 1, 6 were available in both MORGAM and WTCCC2.
aNoncases of the random subcohort of the case–cohort set of MORGAM.
bFor WTCCC2, SNPs rs12116643 and rs651007 were imputed in all cases and controls.
A1 5 allele 1; A2 5 allele 2; CI 5 confidence interval; Effect 5 effect size (beta); OR 5 odds ratio; SE 5 standard error of
effect; SNP 5 single nucleotide polymorphism; WTCCC2 5 Wellcome Trust Case Control Consortium 2.
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hypercholesterolemia, diabetes, and smoking had a small

effect on the strength of the association (unadjusted: beta

5 0.159, 95% CI 5 0.023–0.294, p 5 0.022; adjusted:

beta 5 0.160, 95% CI 5 0.010–0.309, p 5 0.036).

Discussion

Ischemic stroke accounts for considerable morbidity and

mortality in Western countries, and treatment is limited

at present. Our 3-stage study design optimized power for

discovery of common genetic variants predisposing to is-

chemic stroke and stroke subtype. We performed a GWA

study of intermediate coagulation and fibrinolytic pheno-

types in healthy volunteers to examine the genetic deter-

minants of end-stage coagulation and went on to study

their influence on stroke and stroke subtype. We identi-

fied a large number of genetic variants associated with

measures of coagulation factors, both functional and anti-

genic, some of which have been included in GWA meta-

analyses of coagulation.23 We confirmed that polymor-

phisms in the ABO gene were significantly associated

with vWF and FVIII levels in healthy volunteers. Signifi-

cant associations between SNPs in ABO and levels of

vWF (rs505922, rs643434, rs8176743) and/or FVIII

(rs505922, rs651007) were identified; we went on to

demonstrate significant associations between ABO SNPs,

in particular rs505922, and ischemic stroke (see forest

plot in Fig 2).

The associations between FVIII levels and the ABO
gene variant rs505922, and between ABO and coronary

disease, suggest a possible mechanism behind the well-

documented association between the ABO blood group

and risk of vascular disorders. Non-O blood groups are

at increased risk of stroke,24 peripheral vascular disease,

and myocardial infarction (MI) but not coronary artery

disease (as assessed by angina, summarized by Wu et

al25), and this suggests that end-stage coagulation is the

critical determinant. The association we found with

FVIII levels may account for this. Recent GWA studies

of MI have identified variants within the ABO gene that

predispose to MI,26,27 and this relationship appears to

hold for common forms of thrombotic stroke; we found

evidence of association in large-vessel and cardioembolic

stroke, but there was no association with small-vessel dis-

ease. At present, none of the SNPs significantly associ-

ated with stroke is reported to be associated with known

risk factors such as hypertension, hyperlipidemia,

TABLE 5. Characteristics of the Stroke Collections in the MetaStroke Consortium (Stage 3)

Center Cases Controls/Noncases % Female

No. Age, Mean (SD) % Female No. Age, Mean (SD)

ARIC 385 57.3 (5.3) 39.7 8,803 54.1 (5.7) 53.6

ASGC 1,162 72.9 (13.2) 40.8 1,195 66.3 (7.5) 49.8

CEDIR 372 56.1 (15.8) 37.1 407 50.9 (8.2) 12.5

BRAINS 394 68.3 (14.7) 41 444 >65 64.2

CHS 454 81.6 (6.11) 55 2,817 85.8 (5.64) 55

DeCODE 2,401 77.2 (11.3) 46 27,082 50.8 (21.4) 62

FHS 171 80 (10) 55 4,164 NA NA

GASROS 516 66.7 (14.6) 39.7 1,202 47.5 (8.5) 40.9

GEOS 448 41.0 (7.0) 38.6 498 39.5 (6.7) 43.4

HPS 578 64.9 (7.5) 25 468 59.2 (9.3) 33

HVH 566 69.2 (8.64) 66.2 1,290 66.6 (9.13) 52.3

ISGS 1,070 66.6 (14.6) 43.3 1,488 64.1 (17.3) 51.9

Rotterdam 367 70.8 (7.5) 54.8 5,396 69.0 (9.0) 59.7

Totala 8,884 67.1 (10.5) 44.9 55,254 59.4 (9.9) 48.2

Details of all 13 cohorts contributing to the MetaStroke meta-analysis are shown.
aTotals were calculated for controls without FHS or BRAINS where precise data were unavailable.
ARIC 5 Atherosclerosis Risk in Communities; ASGC 5 Australian Stroke Genetics Collaborative; BRAINS 5 Bio-Repository of
DNA in Stroke; CHS 5 Cardiovascular Health Study; FHS 5 Framingham Heart Study; GASROS 5 Genes Affecting Stroke
Risk and Outcome Study; GEOS 5 Genetics of Early Onset Stroke Study; HPS 5 Heart Protection Study; HVH 5 Heart and
Vascular Health; ISGS 5 Ischemic Stroke Genetics Study; No. 5 sample size; SD 5 standard deviation.
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TABLE 6. Meta-Analysis of the ABO Locus in the MetaStroke Consortium: Stage 3

SNP Study Cases Controls/
Noncases

A1 A2 Freq A1 Beta SE p

rs651007 ARIC 385 8,803 C T 0.773 20.04 0.085 0.636

ASGC 1,177 1,195 C T 0.796 20.117 0.073 0.109

BRAINS 394 444 C T 0.803 0.033 0.123 0.786

CEDIR 372 407 C T 0.776 20.192 0.123 0.12

CHS 454 2,817 C T 0.788 20.109 0.106 0.302

DeCODE 2,393 26,982 C T 0.852 20.06 0.044 0.175

FHS 171 4,335 C T 0.79 0.065 0.149 0.664

GASROS 516 1,202 C T 0.686 20.065 0.082 0.429

HPS 578 468 C T 0.791 20.058 0.107 0.588

HVH 566 1,290 C T 0.776 20.028 0.119 0.814

ISGS 1,070 1,488 C T 0.8 20.158 0.076 0.037

Rotterdam 367 5,396 C T 0.794 0.038 0.094 0.168

Meta-analysis 8,443 54,827 C T 0.068 0.025 0.007

rs643434 ARIC 385 8,803 A G 0.368 0.186 0.073 0.011

ASGC 1,177 1,195 A G 0.34 0.149 0.062 0.017

BRAINS 394 444 A G 0.309 20.122 0.109 0.266

CEDIR 372 407 A G 0.378 0.099 0.104 0.34

CHS 454 2,817 A G 0.366 0.07 0.068 0.307

DeCODE 2,393 26,988 A G 0.283 0.043 0.033 0.195

FHS 171 4,335 A G 0.348 0.006 0.115 0.956

HPS 578 468 A G 0.345 0.054 0.094 0.567

HVH 566 1,290 A G 0.367 0.054 0.076 0.48

ISGS 1,070 1,488 A G 0.339 0.047 0.063 0.458

Rotterdam 367 5,396 A G 0.351 0.016 0.076 0.041

Meta-analysis 7,927 53,631 A G 0.062 0.02 0.002

rs505922 ARIC 385 8,803 C T 0.345 0.172 0.074 0.02

ASGC 1,177 1,195 C T 0.317 0.176 0.063 0.005

BRAINS 394 444 C T 0.308 20.108 0.108 0.318

CEDIR 372 407 C T 0.351 0.122 0.105 0.248

CHS 454 2,817 C T 0.342 0.059 0.068 0.391

DeCODE 2,393 26,965 C T 0.74 0.052 0.034 0.129

FHS 171 4,335 C T 0.325 0.04 0.115 0.727

GASROS 516 1,202 C T 0.3 0.094 0.081 0.249

HPS 578 468 C T 0.327 0.047 0.094 0.619

HVH 566 1,290 C T 0.344 0.054 0.077 0.484

ISGS 1,070 1,488 C T 0.329 0.039 0.061 0.528

Rotterdam 367 5,396 C T 0.666 0.005 0.077 0.005

Meta-analysis 8,443 54,810 C T 0.391 0.066 0.02 0.001

Meta-analysis of ischemic stroke performed in MetaStroke cohorts in the ABO locus (those 3 SNPs having positive results shown).
Results of the meta-analysis of the nonsignificant SNP rs8176743 are given in Supplementary Table 2.
A1 5 allele 1; A2 5 allele 2; ARIC 5 Atherosclerosis Risk in Communities; ASGC 5 Australian Stroke Genetics Collaborative;
Beta 5 effect size; BRAINS 5 Bio-Repository of DNA in Stroke; CHS 5 Cardiovascular Health Study; FHS 5 Framingham
Heart Study; Freq 5 frequency; GASROS 5 Genes Affecting Stroke Risk and Outcome Study; HPS 5 Heart Protection Study;
HVH 5 Heart and Vascular Health; ISGS 5 Ischemic Stroke Genetics Study; SE 5 standard error; SNP 5 single nucleotide
polymorphism.



TABLE 7. Meta-Analysis of Single Nucleotide Polymorphism rs505922 in the ABO Locus by Stroke Subtype
(Stage 3)

Center Cases Controls/
Noncases

A1 A2 Freq A1 Beta SE p

Cardioembolic

ARIC 93 9,095 C T 0.345 0.403 0.148 0.006

ASGC 240 1,195 C T 0.305 0.252 0.106 0.017

BRAINS 40 444 C T 0.308 20.032 0.254 0.900

CEDIR 65 407 C T 0.351 0.303 0.196 0.123

CHS 147 2,817 C T 0.342 0.182 0.118 0.125

DECODE 399 26,965 C T 0.260 0.004 0.081 0.960

FHS 48 4,335 C T 0.325 0.067 0.241 0.781

GASROS 169 1,202 C T 0.300 0.171 0.124 0.169

HVH 88 1,290 C T 0.342 0.108 0.161 0.502

ISGS 247 2,311 C T 0.329 0.077 0.101 0.444

WTCCC-G 330 797 C T 0.373 0.120 0.095 0.208

WTCCC-UK 460 5,175 C T 0.325 0.068 0.073 0.350

Meta-analysis 2,326 56,033 C T 0.325 0.122 0.010 0.0002

Large artery

ARIC 31 9,157 C T 0.345 0.490 0.255 0.055

ASGC 421 1,195 C T 0.306 0.163 0.087 0.060

BRAINS 118 444 C T 0.308 20.075 0.161 0.639

CEDIR 74 407 C T 0.351 0.235 0.185 0.205

DECODE 240 26,965 C T 0.260 0.025 0.105 0.815

GASROS 95 1,202 C T 0.300 20.076 0.169 0.653

HVH 61 1,290 C T 0.342 0.127 0.176 0.470

ISGS 229 2,329 C T 0.329 0.165 0.103 0.112

WTCCC-G 346 797 C T 0.373 0.213 0.096 0.026

WTCCC-UK 498 5,175 C T 0.325 0.075 0.07 0.281

Meta-analysis 2,113 48,961 t c 0.324 0.116 0.026 0.001

Small vessel

ARIC 63 9,125 C T 0.345 20.185 0.193 0.339

ASGC 310 1,195 C T 0.305 0.197 0.098 0.043

BRAINS 113 444 C T 0.308 20.045 0.168 0.787

CEDIR 25 407 C T 0.351 0.007 0.312 0.981

CHS 73 2,817 C T 0.339 20.110 0.176 0.533

DECODE 255 26,965 C T 0.260 20.035 0.101 0.728

GASROS 38 1,202 C T 0.300 0.320 0.244 0.190

HVH 173 1,290 C T 0.342 0.054 0.125 0.663

ISGS 201 2,357 C T 0.329 20.206 0.115 0.071

WTCCC-G 106 797 C T 0.373 0.267 0.153 0.082

WTCCC-UK 474 5,175 C T 0.325 20.096 0.073 0.192

Meta-analysis 1,831 51,774 C T 0.325 20.009 0.038 0.811

Subtypes of ischemic stroke were examined in MetaStroke, WTCCC-G, and WTCCC-UK. Subtyping included cardioembolic,
large-artery, and small-vessel disease.
A1 5 major allele; A2 5 minor allele; ARIC 5 Atherosclerosis Risk in Communities; ASGC 5 Australian Stroke Genetics Col-
laborative; Beta 5 effect size; BRAINS 5 Bio-Repository of DNA in Stroke; CHS 5 Cardiovascular Health Study; FHS 5 Fra-
mingham Heart Study; Freq 5 frequency; GASROS 5 Genes Affecting Stroke Risk and Outcome Study; HVH 5 Heart and
Vascular Health; ISGS 5 Ischemic Stroke Genetics Study; p 5 probability of association; SE 5 standard error of the effect;
WTCCC-G 5 Wellcome Trust Case Control Consortium, German subcohort; WTCCC-UK 5 WTCCC, UK subcohort.



diabetes, or propensity to drink alcohol or smoke. Sub-

group analysis of the study group having risk factor in-

formation (WTCCC2–Munich) attenuated the strength

of the association but did not suggest that the action of

the genetic variation was predominantly though 1 of

these risk factors.

SNP rs505922 represents a single base pair change

from T to C at position 135,139,050 and lies within the

first intron of the ABO gene, although its haplotype

block contains the promoter and introns 1 and 2. The

minor allele frequency of this SNP is 36% in Northern

Europeans. The ABO gene encodes a glycosyltransferase

enzyme that catalyses the transfer of different carbohy-

drate groups onto the H antigen, thus forming A and B

antigens of the ABO system. In support of a functional

role in thrombosis (as opposed to atherosclerosis), the

non-O blood group has also been shown to be a risk fac-

tor for venous thrombosis,28 and in a large prospective

study, pulmonary embolism.29 A previous GWA study

identified the same SNP, rs505922, to be associated with

venous thromboembolism,30 and a recent GWA study of

blood metabolites suggests that this locus may act via an

effect on fibrinogen phosphorylation.31

Our results demonstrate that the association

between ABO SNPs and ischemic stroke is limited to

large-artery and cardioembolic stroke, but absent in

small-vessel stroke. Thromboembolism plays an impor-

tant role in pathogenesis of both cardioembolic and

large-artery stroke, with thrombus arising in the heart

and on larger-artery atherosclerotic plaques, respectively,

which may break off and embolize into the cerebral cir-

culation. In both stroke subtypes, cerebral emboli can be

detected in the cerebral circulation using transcranial

Doppler,32 and antithromboembolic therapy reduces

stroke risk. Recently, vWF inhibition has been shown to

reduce cerebral thromboembolism in man,33 a clinical

observation that is in keeping with our findings. In con-

trast, the pathogenesis of small-artery stroke is unclear,

and the role of thrombosis remains uncertain.34 Our

results suggest that thrombosis may be less important for

this stroke subtype and explain why antithromboembolic

medication is less effective. The subtype specificity we

have identified is consistent with others’ results; of 5

GWA studies identified and replicated, 2 have been stud-

ies of cardioembolic stroke,35,36 2 of large-vessel stroke,37

and 1 of small-vessel stroke.38 Taken together, these data

highlight that the clinical endpoint of ischemic stroke

represents a varied phenotype likely resulting from multi-

ple pathogenic mechanisms.

Other associations between SNPs and intermediate

phenotypes included rs12137359 and FXIII activity and

rs800292 and FXIIIA subunit levels. Both variants are

FIGURE 2: Forest plot shows results of the meta-analysis of rs505922 in Meta-Stroke. An inverse variance fixed effects model
was used. The central filled dots represent odds ratios (ORs) in the individual cohorts, with their 95% confidence intervals (CIs;
dark lines), and gray squares are proportional to sample size. The hollow diamond represents the meta-effect observed overall
(p 5 0.0006). ARIC 5 Atherosclerosis Risk in Communities; ASGC 5 Australian Stroke Genetics Collaborative; BRAINS 5 Bio-
Repository of DNA in Stroke; CHS 5 Cardiovascular Health Study; FHS 5 Framingham Heart Study; GASROS 5 Genes Affect-
ing Stroke Risk and Outcome Study; HPS 5 Heart Protection Study; HVH 5 Heart and Vascular Health; ISGS 5 Ischemic Stroke
Genetics Study.
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found close to the gene encoding the FXIIIB subunit,

which acts as a carrier protein for FXIIIA in the circula-

tion and stabilizes FXIIIA to regulate activation; how-

ever, these SNPs were not associated with MI or ische-

mic stroke. We also identified associations between

SNPs in the vicinity of the F7 gene and FVII:C, con-

sistent with a number of studies that have previously

identified relationships between variation in the struc-

tural genes for FVII and circulating levels.39,40 No other

SNPs significantly associated with coagulation interme-

diate phenotypes were significantly associated with is-

chemic stroke.

There are a number of limitations to this work.

First, TUK is predominantly female in its composition,

for historical reasons. Although TUK subjects are repre-

sentative of the general population variation8 and there is

no evidence of an effect of gender on the ABO predispo-

sition to cardiovascular disease, the associations identified

in Stage 1 are pertinent to females from Northern

Europe. Second, the clinical studies used for Stage 2

were heterogeneous in many respects. We decided that it

was of overriding importance to obtain a large sample, so

we combined prospective and cross-sectional studies.

One of the main strengths of the study design was the

use of multiple novel intermediate phenotypes, as well as

having the power to investigate stroke subtypes. The

Stage 3 study groups had differing methods of genotyp-

ing and imputation, but methods have been shown to be

broadly comparable.41

In conclusion, using end-stage coagulation interme-

diate traits in healthy volunteers, we identified 23 ge-

nome-wide independent coagulation-associated SNPs,

which were investigated in a number of clinical collec-

tions of stroke. Genetic variant rs505922 in the ABO

locus was found to be associated with ischemic stroke,

and in particular the subtypes large-vessel and cardioem-

bolic stroke, but not small-vessel disease. This SNP was

highly associated with vWF and FVIII in the discovery

phase, and this observation throws light on possible

mechanisms underlying end-stage coagulation in cardio-

vascular disease. It seems that common genetic variants

exert some of their influence on end-stage stroke through

coagulation, and further work is needed to tease apart

these complex networks of interactions. The identifica-

tion of the ABO locus through its association with vWF

and FVIII points the way for mechanistic work to under-

stand better the role of these 2 coagulation factors in

end-stage arterial thrombosis.
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